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Nonlinear Phase Changes in a Deformed
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In this paper we study nonlinear phase changes of some states with respect to a phase
distribution on a deformed Hilbert space.

1. INTRODUCTION

Quantum-mechanical description of phase has a long history, starting with the
work of Dirac (1927), who attempted definition of a phase operator with the help
of polar decomposition of the annihilation operator in radiation field. Thereafter,
Susskind and Glogower (1964), Carruthers and Nieto (1968), Pegg and Barnett
(1989), and Shapiro and Shepard (1991) have further studied this topic. Susskind
and Glogower modified Dirac’s phase operator, though it is a one-sided unitary
operator. Nevertheless, their phase operator has been extensively used in quan-
tum optics. Shapiro and Shepard introduced phase measurement statistics through
quantum estimation theory (Helstrom, 1976). Pegg and Barnett (1989) carried out
a polar decomposition of the annihilation operator in a truncated Hilbert space of
dimensions+ 1, and defined a Hermitian phase operator in this finite-dimensional
space. Now, given a state in the finite-dimensional Hilbert space one first com-
putes the expectation value with the restricted state to the (s+ 1)-dimensional
space. It is natural now to take the limits to infinity and recover a Hermitian
phase operator in the full Hilbert space. However, in this limit the PB phase op-
erator does not converge to a Hermitian phase operator, but the distribution does
converge to the SG phase distribution. Thus it appears to be computationally ad-
vantageous to describe the quantum-mechanical phase via a phase distribution
rather than through a phase operator. This view was manifested in the work of
Shapiro and Shepard. Agarwal and coworkers (1992) adopted this point of view
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in investigating the quantum-mechanical phase properties of the nonlinear optical
phenomena.

Keeping the ideas of Susskind and Glogower in mind, I (Das, 1999a, 2000)
recently, described a phase operator in a deformed Hilbert space and studied phase
distribution of Kerr vectors. Here, I shall adopt the viewpoint of Agarwal and
coworkers to investigate the phase properties of several states (vectors) in a de-
formed Hilbert space.

The work is organized as follows. In Section 2, we give a brief description
of phase distribution that we would like to associate to a given density operator.
In Section 3, we describe a few illustrative examples. In fact, we describe how
the phase distribution will look like when we take incoherent vector, coherent
vector, coherent phase vector, and Kerr vector in the deformed space. In Section 4,
we consider the evolution of the phase distribution associated with a field as it
propagates through nonlinear mediums. We shall discuss two well-known Kerr-
like phenomena with examples. In Section 5, we observe how the phase distribution
changes in the process of photon absorption from a thermal beam and finally we
give a conclusion.

2. PHASE DISTRIBUTION IN A DEFORMED HILBERT SPACE

Before we describe Phase distribution in brief, we narrate a few preliminaries
and notations.

2.1. Preliminaries and Notations

We consider the set

Hq =
{

f : f (z) =
∑

anzn where
∑

[n]! |an|2 <∞
}
,

where [n] = (1− qn)/(1− q), 0< q < 1.
For f, g ∈ Hq, f (z) =∑∞n=0 anzn, g(z) =∑∞n=0 bnzn, we define addition

and scalar multiplication as follows:

f (z)+ g(z) =
∞∑

n=0

(an + bn)zn (1)

and

λ ◦ f (z) =
∞∑

n=0

λanzn. (2)

It is easily seen thatHq forms a vector space with respect to usual pointwise
scalar multiplication and pointwise addition by (1) and (2). We observe thateq(z) =∑∞

n=0
zn

[n]! belongs toHq.
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Now we define the inner product of two functionsf (z) =∑anzn andg(z) =∑
bnzn belonging toHq as

( f, g) =
∑

[n]! ān bn. (3)

Corresponding norm is given by

‖ f ‖2 = ( f, f ) =
∑

[n]! |an|2 <∞.

With this norm derived from the inner product it can be shown thatHq is a
complete normed space. HenceHq forms a Hilbert space.

In a recent paper (Das, 1998, 1999b), I have proved that the set{zn/
√

[n]! , n =
0, 1, 2, 3, . . . } forms a complete orthonormal set. If we consider the following
action onHq,

T fn =
√

[n] fn−1

T∗ fn =
√

[n+ 1] fn+1,
(4)

whereT and its adjointT∗ are the backward shift and forward shift operators,
respectively, onHq, and fn(z) = zn/

√
[n]!. Then we have shown (Das, 1998,

1999b) that the solution of the following eigenvalue equation

T fα = α fα (5)

is given by

fα = eq(|α|2)−1/2
∞∑

n=0

αn

√
[n]!

fn. (6)

We call fα acoherent vectorin Hq.

2.2. Phase Vectors

To obtain the phase vector, we first consider the Susskind–Glogower type
phase operator P= (qn + T∗T)−1/2T and try to find the solution of the following
eigenvalue equation:

P fβ = β fβ, (7)

where

fβ(z) =
∞∑

n=0

an zn =
∞∑

n=0

an

√
[n]! fn(z). (8)
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and we arrive at

fβ =
∞∑

n=0

an

√
[n]! fn

= a0

∞∑
n=0

βn

√
(q + [0])(q2+ [1])(q3+ [2]) · · · (qn + [n− 1])

[n]!
fn.

whereβ = |β|ei θ is a complex number.
For details we refer to Das (1999a).
These vectors are normalizable in a strict sense only for|β| < 1.
Now if we takea0 = 1 and|β| = 1, we have

fβ =
∞∑

n=0

einθ

√
(q + [0])(q2+ [1])(q3+ [2]) · · · (qn + [n− 1])

[n]!
fn. (9)

Henceforth, we shall denote this vector as

fθ =
∞∑

n=0

einθ

√
(q + [0])(q2+ [1])(q3+ [2]) · · · (qn + [n− 1])

[n]!
fn, (10)

0≤ θ ≤ 2π and call fθ aphase vectorin Hq.
The phase vectorsfθ are neither normalizable nor orthogonal, but form a

complete set and yield the following resolution of the identity:

I = 1

2π

∫
X

∫ 2π

0
dν(x, θ ) | fθ >< fθ | (11)

where

dν(x, θ ) = dµ(x) dθ, (12)

which may be proved as follows:
Here we consider the setX consisting of the pointsx = 0, 1, 2, . . . andµ(x)

is the measure onX which equals

µn ≡ [n]!

(q + [0])(q2+ [1]) · · · (qn + [n− 1])

at the pointx = n, andθ is the Lebesgue measure on the circle.
Define the operator

| fθ >< fθ | : Hq → Hq (13)

by

| fθ >< fθ | f = ( fθ , f ) fθ , (14)

with f (z) =∑∞n=0 anzn.
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Now,

( fθ , f )

=
∞∑

n=0

[n]!
e−inθ

√
[n]!

√
(q + [0]) (q2+ [1]) (q3+ [2]) · · · (qn + [n− 1])

[n]!
an

=
∞∑

n=0

e−inθ
√

(q + [0]) (q2+ [1]) (q3+ [2]) · · · (qn + [n− 1])an. (15)

Then,

( fθ , f ) fθ =
∞∑

n=0

∞∑
m=0

anei (m−n)θ

√
(q + [0])(q2+ [1]) · · · (qm + [m− 1])

[m]!

×
√

(q + [0])(q2+ [1]) · · · (qn + [n− 1]) fm. (16)

Using ∫ 2π

0
dθ ei (m−n)θ = 2πδmn, (17)

we have

1

2π

∫
X

∫ 2π

0
dν(x, θ ) | fθ >< fθ | f

=
∫

X
dµ(x)

∞∑
n=0

∞∑
m=0

an fm

√
(q + [0])(q2+ [1]) · · · (qm + [m− 1])

[m]!

×
√

(q + [0])(q2+ [1]) · · · (qn + [n− 1])
1

2π

∫ 2π

0
ei (m−n)θ dθ

=
∞∑

n=0

an fn

∫
X

(q + [0])(q2+ [1]) · · · (qn + [n− 1])√
[n]!

dµ(x)

=
∞∑

n=0

an fn
(q + [0])(q2+ [1]) · · · (qn + [n− 1])√

[n]!

× [n]!

(q + [0])(q2+ [1]) · · · (qn + [n− 1])

=
∞∑

n=0

√
[n]!an fn

= f.

(18)

Thus, (11) follows.
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We use the vectorsfθ to associate, to a given density operatorρ, a phase
distribution as follows:

P(θ ) = 1

2π
( fθ , ρ fθ )

= 1

2π

∞∑
m,n=0

√
(q + [0]) · · · (qm + [m− 1])

[m]!

×
√

(q + [0]) · · · (qn + [n− 1])

[n]!
ei (n−m)( fm, ρ fn) (19)

The P(θ ) as defined in (19) is positive (owing to the positivity ofρ) and is
normalized ∫

X

∫ 2π

0
P(θ ) dν(x, θ ) = 1, (20)

where

dν(x, θ ) = dµ(x) dθ (21)

for,

∫
X

∫ 2π

0
P(θ ) dν(x, θ ) =

∫
X

dµ(x)
∞∑

m,n=0

√
(q + [0]) · · · (qm + [m− 1])

[m]!

×
√

(q + [0]) · · · (qn + [n− 1])

[n]!

× 1

2π

∫ 2π

0
ei (m−n)θ dθ ( fm, ρ fn)

=
∫

X
dµ(x)

∞∑
n=0

(q + [0]) · · · (qn + [n− 1])

[n]!
( fn, ρ fn)

=
∞∑

n=0

( fn, ρ fn)

= 1. (22)

In particular, thephase distributionover the window 0≤ θ ≤ 2π for any vector
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f is then defined by

P(θ ) = 1

2π
( fθ , | f >< f | fθ )

= 1

2π
|( fθ , f )|2.

(23)

3. EXAMPLES

We now consider some specific vectors in the Hilbert spaceHq and compute
their corresponding phase ditributions.

3.1. Incoherent Vectors

For the incoherent vectors we take the density operator to be

ρ =
∞∑

n=0

pn| fn >< fn|, (24)

with

pn ≥ 0 and
∞∑

n=0

pn = 1.

Now we calculate the phase distributionP(θ ) as

P(θ ) = 1

2π
( fθ , ρ fθ )

= 1

2π

∞∑
n=0

pn( fθ , | fn >< fn| fθ )

= 1

2π

∞∑
n=0

pn|( fθ , fn)|2

= 1

2π

∞∑
n=0

pn
(q + [0]) · · · (qn + [n− 1])

[n]!

(25)

3.2. Coherent Vectors

For the coherent vectors (Das, 1998)

fα = eq(|α|2)−1/2
∞∑

n=0

αn

√
[n]!

fn. (26)

We take the density operator to be

ρ = | fα >< fα|, α = |α|ei θ0, (27)
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and calculate the phase distributionP(θ ) as

P(θ ) = 1

2π
( fθ , ρ fθ )

= 1

2π
( fθ , | fα >< fα| fθ )

= 1

2π
|( fθ , fα)|2

= 1

2π

∣∣∣∣∣ ∞∑
n=0

ein(θ0−θ ) |α|n√
[n]!

eq(|α|2)−1/2

√
(q + [0]) · · · (qn + [n− 1])

[n]!

∣∣∣∣∣
2

(28)

3.3. Coherent Phase Vectors

For a coherent phase vector (Das, 1999a)

fβ = 8(|β|2)−1/2
∞∑

n=0

βn

√
(q + [0]) · · · (qn + [n− 1])

[n]!
fn, (29)

with |β| < 1 and

8(|β|2) =
∞∑

n=0

|β|2n (q + [0]) · · · (qn + [n− 1])

[n]!
. (30)

We take the density operator to be

ρ = | fβ >< fβ |, (31)

and calculate the phase distributionP(θ ) as

P(θ ) = 1

2π
( fθ , ρ fθ )

= 1

2π
( fθ , | fβ >< fβ | fθ )

= 1

2π
|( fθ , fβ)|2

= 1

2π

∣∣∣∣∣8(|β|2)−1/2
∞∑

n=0

βne−inθ (q + [0]) · · · (qn + [n− 1])

[n]!

∣∣∣∣∣
2

= 1

2π

|8(e−i θβ)|2
8(|β|2)

.

(32)
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3.4. Kerr Vectors

For a Kerr vector (Das, 1999a)

φK
α = e

i
2γ N(N−1)
q fα

=
∞∑

n=0

kn fn,
(33)

where

kn = eq(|α|2)−1/2 αn

√
[n]!

e
i
2γ [n]([n]−1)
q . (34)

We take the density operator to be

ρ = ∣∣φK
α >< φK

α

∣∣, (35)

and calculate the phase distributionP(θ ) as

P(θ ) = 1

2π
( fθ , ρ fθ )

= 1

2π

(
fθ ,
∣∣φK
α >< φK

α

∣∣ fθ
)

= 1

2π

∣∣( fθ , φ
K
α

)∣∣2
= 1

2π

∣∣∣∣∣ ∞∑
n=0

e−inθkn
(q + [0]) · · · (qn + [n− 1])

[n]!

∣∣∣∣∣
2

.

(36)

4. PROPAGATION THROUGH NONLINEAR MEDIUMS

Here, we consider the evolution of the phase distribution associated with a
field as it propagates through nonlinear mediums. We shall discuss two well-known
Kerr-like phenomena that fall in this category.

4.1. The first dynamic evolution of the density operator for our consideration is
given by

ρ(t) = eq(−i γT∗2T2t)ρ(0)eq(i γT∗2T2t) (37)

whereγ is the Kerr constant of the medium. The time evolution of the correspond-
ing phase distribution is given by

P(θ, t) = 1

2π
( fθ , ρ(t) fθ ). (38)
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4.1.1. For an initial incoherent vector

ρ(0)= | fn >< fn|, (39)

P(θ, t) is given by

P(θ, β) = 1

2π

(
fθ , eq(−i γT∗2T2t)| fn >< fn|eq(i γT∗2T2t) fθ

)
= 1

2π

(
fθ , eq(−i γT∗2T2t)

(
fn, eq(i γT∗2T2t) fθ

)
fn
)

= 1

2π

(
fn, eq(i γT∗2T2t) fθ

)(
fθ , eq(−i γT∗2T2t) fn

)
= 1

2π

∣∣( fn, eq(i γT∗2T2t) fθ
)∣∣2

= 1

2π

∣∣∣∣∣einθ

√
(q + [0]) · · · (qn + [n− 1])

[n]!
eq(i γ t [n][n− 1])

∣∣∣∣∣
2

= 1

2π

∣∣∣∣∣
√

(q + [0]) · · · (qn + [n− 1])

[n]!
eq(iβ[n][n− 1])

∣∣∣∣∣
2

,

(40)

whereβ = γ t .

4.1.2. For an initial Coherent vector

ρ(0)= | fα >< fα|, α = |α|ei θ0 (41)

P(θ, t) is given by

P(θ, β) = 1

2π

(
fθ , eq(−i γT∗2T2t)| fα >< fα|eq(i γT∗2T2t) fθ

)
= 1

2π

(
fθ , eq(−i γT∗2T2t)

(
fα, eq(i γT∗2T2t) fθ

)
fα
)

= 1

2π

(
fα, eq(i γT∗2T2t) fθ

)(
fθ , eq(−i γT∗2T2t) fα

)
= 1

2π

∣∣∣∣∣ ∞∑
n=0

eq(|α|2)−1/2 |α|n√
[n]!

ein(θ−θ0)

√
(q + [0]) · · · (qn + [n− 1])

[n]!

× eq(iβ[n][n− 1])

∣∣∣∣∣
2

,

(42)
whereβ = γ t .
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4.1.3. For an initial coherent phase vector (Das, 1999a)

fβ = 8(|β|2)−1/2
∞∑

n=0

βn

√
(q + [0]) · · · (qn + [n− 1])

[n]!
fn, (43)

with |β| < 1 and

8(|β|2) =
∞∑

n=0

|β|2n (q + [0]) · · · (qn + [n− 1])

[n]!
, (44)

we take the initial density operator to be

ρ(0)= | fβ >< fβ |. (45)

ThenP(θ, t) is given by

P(θ, δ) = 1

2π

(
fθ , eq(−i γT∗2T2t)| fβ >< fβ |eq(i γT∗2T2t) fθ

)
= 1

2π

(
fθ , eq(−i γT∗2T2t)

(
fβ, eq(i γT∗2T2t) fθ

)
fβ
)

= 1

2π

(
fβ, eq(i γT∗2T2t) fθ

)(
fθ , eq(−i γT∗2T2t) fβ

)
= 1

2π

∣∣∣∣∣ ∞∑
n=0

8(|β|2)−1/2β̄neinθ (q + [0]) · · · (qn + [n− 1])

[n]!

× eq(i δ[n][n− 1])

∣∣∣∣∣
2

,

(46)

whereδ = γ t .

4.2. The second dynamic evolution of the density operator for our consideration
is given by

ρ(t) = eq
(−i γ (T∗T)2t)ρ(0)eq(i γ (T∗T)2t

)
(47)

whereγ is the Kerr constant of the medium. The time evolution of the correspond-
ing phase distribution is given by,

P(θ, t) = 1

2π
( fθ , ρ(t) fθ ) (48)

4.2.1. For an initial incoherent vector

ρ(0)= | fn >< fn| (49)
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P(θ, t) is given by

P(θ, β) = 1

2π

(
fθ , eq(−i γ (T∗T)2t)| fn >< fn|eq(i γ (T∗T)2t) fθ

)
= 1

2π

(
fθ , eq(−i γ (T∗T)2t)

(
fn, eq(i γ (T∗T)2t) fθ

)
fn
)

= 1

2π

(
fn, eq(i γ (T∗T)2t) fθ

)(
fθ , eq(−i γ (T∗T)2t) fn

)
= 1

2π

∣∣( fn, eq(i γ (T∗T)2t) fθ
)∣∣2

= 1

2π

∣∣∣∣∣einθ

√
(q + [0]) · · · (qn + [n− 1])

[n]!
eq(i γ t [n]2)

∣∣∣∣∣
2

= 1

2π

∣∣∣∣∣
√

(q + [0]) · · · (qn + [n− 1])

[n]!
eq(iβ[n]2)

∣∣∣∣∣
2

(50)

whereβ = γ t .

4.2.2. For an initial Coherent vector

ρ(0)= | fα >< fα|, α = |α|ei θ0 (51)

P(θ, t) is given by

P(θ, β) = 1

2π

(
fθ , eq(−i γ (T∗T)2t)| fα >< fα|eq(i γ (T∗T)2t) fθ

)
= 1

2π

(
fθ , eq(−i γ (T∗T)2t)

(
fα, eq(i γ (T∗T)2t) fθ

)
fα
)

= 1

2π

(
fα, eq(i γ (T∗T)2t) fθ

)(
fθ , eq(−i γ (T∗T)2t) fα

)
(52)

= 1

2π

∣∣∣∣∣ ∞∑
n=0

eq(|α|2)−1/2 |α|n√
[n]!

ein(θ−θ0)

√
(q + [0]) · · · (qn + [n− 1])

[n]!

× eq(iβ[n]2)

∣∣∣∣∣
2

whereβ = γ t .

4.2.3. For an initial coherent phase vector (Das, 1999a)

fβ = 8(|β|2)−1/2
∞∑

n=0

βn

√
(q + [0]) · · · (qn + [n− 1])

[n]!
fn (53)
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with |β| < 1 and

8(|β|2) =
∞∑

n=0

|β|2n (q + [0]) · · · (qn + [n− 1])

[n]!
. (54)

We take the initial density operator to be

ρ(0)= | fβ >< fβ |. (55)

ThenP(θ, t) is given by

P(θ, δ) = 1

2π

(
fθ , eq(−i γ (T∗T)2t)| fβ >< fβ |eq(i γ (T∗T)2t) fθ

)
= 1

2π

(
fθ , eq(−i γ (T∗T)2t)

(
fβ, eq(i γ (T∗T)2t) fθ

)
fβ
)

= 1

2π

(
fβ, eq(i γ (T∗T)2t) fθ

)(
fθ , eq(−i γ (T∗T)2t) fβ

)
= 1

2π

∣∣∣∣∣ ∞∑
n=0

8(|β|2)−1/2β̄neinθ (q + [0]) · · · (qn + [n− 1])

[n]!

× eq(i δ[n]2)

∣∣∣∣∣
2

(56)

whereδ = γ t .

5. PROCESS OF PHOTON ABSORPTION FROM A THERMAL BEAM

We next consider the phenomenon of photon absorption from a thermal beam
(Agarwal, 1992). The density operator associated with the process can be writ-
ten as

ρ = cT∗sρ0Ts (57)

wherec is a normalization constant.
If we take the input field as a coherent vector, then the density operators for

the input and the absorbed field are

ρin = | fα >< fα|, α = |α|ei θ0 (58)

and

ρout = cT∗s| fα >< fα|Ts, s> 0. (59)

Having obtained the density operator for the output field, we can now calculate
the corresponding phase distribution. The phase distributionPin(θ ) corresponding
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to ρin has already been calculated in Section 3.2. The phase distributionPout(θ )
for the absorbed field is given by

Pout(θ ) = 1

2π
( fθ , ρout fθ )

= 1

2π

(
fθ , cT∗s| fα >< fα|Ts fθ

)
= c

2π

(
fθ , T

∗s( fα, T
s fθ
)

fα
)

= c

2π

∣∣( fα, T
s fθ
)∣∣2 (60)

= c

2π

∣∣∣∣∣ ∞∑
n=0

eq(|α|2)−1/2 |α|n√
[n]!

ein(θ−θ0)

√
(q + [0]) · · · (qn + [n− 1])

[n]!

×
√

[n][n− 1] · · · [n− s+ 1]

∣∣∣∣∣
2

6. CONCLUSION

In conclusion, we have shown how the phase distribution associated with
the field evolves in various nonlinear processes. Specifically, we observed how
phase distribution evolves when it propagates through Kerr-like mediums and
when it undergoes the process of photon absorption from a thermal beam. In all
the cases, we have defined phase distribution with the help of quasiprobabilities
associated with the fields, and phase operator coming out of Susskind-Glogower
type decomposition of annihilation operator has been used.
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